

magnetic[®] GmbH & Co. KG

Ermen Systems

Heating Water Treatment

(based on VDI 2035/2)

magnetic[®] ...einfach besser

The 3 main drivers for corrosion in a closed circuit system:

- Conductivity (µS/ cm)
- pH value too high or too low
- Oxygen

VDI 2035/2 Prevention of corrosion

The VDI 2035/2 stipulates the following:

- Conductivity < 100 μS/cm
- pH between 8,2-10 (Aluminium-Silicium 8,2-8,5)
- Oxygen 0,02mg/l (if water is demineralised 5x higher)

VDI 2035/2 Prevention of loss of heat transfer

Main drivers for heat transfer loss is scale formation

Main drivers for heat transfer loss is scale formation

Examples of increase in energy consumption as a result of scale formation

Scale layer (inches)	Increased energy consumption (%)
1/32 (0,79375 mm)	8.5
1/16 (1,5875 mm)	12.4
1/8 (3,175 mm)	25.0
1/4 (6,35 mm)	50.0 +

Source: https://www.wysiwash.com/downloads/ScaleSafe-Energy-Savings.pdf

VDI 2035/ 2

Prevention of loss of heat transfer

Main drivers for heat transfer loss is scale formation

Effect of limescale on heat transfer

Example calculation for power reduction through a limescale layer with only 0,5mm

Heat tranfer rate =	$\frac{1}{\frac{1}{\alpha_{1}} + \frac{s_{1}}{\lambda_{1}} + \frac{s_{2}}{\lambda_{2}} + \frac{1}{\alpha_{2}}} W/m^{2}K$
$\begin{array}{l} \substack{\alpha_1 \\ \alpha_2 \ = \ 4.600 \text{ W/m}^2\text{K} \\ s_1 \ = \ 1 \text{ mm} \\ \lambda_1 \ = \ 20 \text{ W/m}^2\text{K} \\ s_2 \ = \ 0.5 \text{ mm} \\ \lambda_2 \ = \ 0.81 \text{ W/mK} \end{array}$	Primary circuit Secondary circuit Wall thickness of the heat exchanger Thermal conductivity of the exchanger Thickness of limescale Thermal conductivity of limescale
Without limescale Heat transfer rate	$\frac{1}{\frac{1}{10.000} + \frac{0.001}{20} + \frac{0}{0.81} + \frac{1}{4.600}} = \frac{2.721}{W/m^2K}$
½ mm limescale Heat transfer rate	$\frac{1}{\underbrace{\frac{1}{10.000} + \frac{0.001}{20} + \frac{0.0005}{0.81} + \frac{1}{4.600}} = \frac{1.015}{W/m^2K}$

Reduction of heat transfer rate = 62%

Source: ECOTHERM

Prevention of corrosion and optimization of heat transfer

The tools to manage corrosion and optimal heat transfer for domestic/small scale

Demineralisation Cartridge

Heating Water Regulator

Process Demineralisation

Demineralisation in one single step Cations (+) Anions (-) Cations (+) Anions (-) Mixed bed resin OH OH OH Ca2+ H+ OH HCO3 H⁺ H⁺ _H⁺ H⁺ H+ OH H⁺ OH H⁺ Mg²⁺ OH H⁺ OH Na⁺ Cl-H+ H⁺ OH SO42-K⁺ OH H⁺

Minerals

Pure H20 Hardness 0 Conductivity 0.001 µS/cm Ph-value 8.2

OH-

magnetic[®] ...einfach besser

Advantages of complying to the VDI 2035/2 by Demineralisation

Demineralized water has a hardness below ~0,001°dH which prevents damage caused by scale formation

Removal of chlorides, sulphates and nitrates prevents corrosion and formation of insoluble residue

By removing of all exchangeable ions the **electrical coductivity drops below** <**10µS/cm** which makes corrosion unlikely. At the same time a higher concentration of oxygen can be tolerated

Adding checmicals which are only hard to handle is **not** necessary. Only if the ph-value does not reach a range from 8,2-8,5 after 12 weeks a conditioning is necessary

Full manufacturer's warranty (most boiler manufacturer's ask for compliance to VDI2035 in warranty cases)

The tools to demineralize the water

tems without having to replace the heating system water. Conductivity measurement with a measuring computer at the inlet and outlet which allows a circulation demineralization with an inline connection to the heating circuit.

OR

The Compact Solution Handy and cost efficient.

Premium resin to demineralize and top up water

Effective and Long Service Life Premium Mixed Bed Resin.

The first mixed bed resin with quality certification

The quality of the resin determines the quality of the heating system water. It is therefore very im-

Equipment for topping up water

Tools to regulate and manage heating water quality

magnetic[®] HWR plus heating water regulator

Degasser, Sludge Remover, pH-Protection, Filter

The Problems with Limescale in DHW

- Damage to hot water systems.
 - Damaged pipes.
 - Shorter life for appliances.
- Increase in energy consumption.

Competitors Solutions

- Other competitors solutions include the use of either:
 - Chemicals
 - Salts.
 - Both solutions have adverse effects:
- Salts can cause and increase the rate of corrosion and health problems,
- Chemical discharge can cause problems in the municipal water plants.
 - Both require monitoring and maintenance.

Our Solution: Magnetic's Limescale transformer

Less is More!!

How it works:

- Limescale as seen under a microscope, has a snowflake like structure allowing the jagged edges to stick together and accumulate.
- After passing through the Magnetic's Limescale transformer, the molecular shape of limescale is transformed into a spherical shape.
- In turn, this allows the Limescale to now pass through and not accumulate, keeping the vitality of the water while protecting

appliances.

magnetic[®]einfach besser

Why Magnetic?

- Protection for Pipes and Appliances.
- Reduction in Energy Costs.
- Increased Thermal Efficiency.
- 20 Year Warranty.
- No Chemicals introduced to water.
- No Installation ,Maintenance or

magnetic*

Conclusion: Less is More

By changing the structure of Limescale (Calcium), and not removing it from the water the following benefits occur:

- Less Energy needed to heat water, Fuel and Electricity
 - Less Carbon Emissions
 - Less appliances breaking down
 - Less heating elements needing replacement
 - Less (No) chemicals
 - Less installation costs
 - Less maintenance/running costs
 - Less spare parts needed
- Less call outs, reducing carbon emissions from Service Vehicles
 - Less (No) salts
 - Less (No)Plastic bags used with no salt
 - Less requirement for Calcium supplements
 - Less detergents, shampoos and conditioners
 - Less Packaging/Plastic containers
 - Less water usage, no Regeneration

Conclusion: Less is More

And by using our demineralised water system we can guarantee:

- Less Energy needed, Fuel and Electricity
- Less Carbon Emissions
- Less components breaking down in circuit
- Less (No) Chemicals
- Less Maintenance Running Costs
- Less spare parts needed, no corrosion
- Less call outs, reducing carbon emissions from Service Vehicles
- Less Packaging needed for reduction in parts
- Less Air Miles transporting Spare Parts
- Less Disposal/Scrappage costs
- Less Noise in system
- Less Environmental impact

